Posted in Երկրաչափություն 9

Անկյան սինուսը, կոսինուսը և տանգենսը

Կոորդինատային հարթության մեջ կառուցենք 1 շառավղով կիսաշրջանագիծ, որի կենտրոնը կոորդինատների սկզբնակետն է: Այն անվանենք միավոր կիսաշրջանագիծ:

Vienibas_pusr.png

Դիտարկենք α սուր անկյունով AOX ուղղանկյուն եռանկյունը:

Գիտենք, որ սուր անկյան սինուսը հավասար է անկյան դիմացի էջի հարաբերությանը ներքնաձիգին, իսկ կոսինուսը՝ կից էջի հարաբերությանը ներքնաձիգին:

Այսպիսով՝

քանի որ կիսաշրջանագծի շառավիղը R=AO=1, ապա sinα=AX;cosα=OX

0°≤α≤180° միջակայքի ցանկացած α անկյան սինուս կոչվում է A կետի y կոորդինատը, իսկ կոսինուս՝ այդ կետի x կոորդինատը՝ A(cosα;sinα)

Հետևաբար, 0°≤α≤180° միջակայքի ցանկացած անկյան համար տեղի ունեն հետևյալ անհավասարությունները՝ −1≤cosα≤1; 0≤sinα≤1

1) α անկյան (α≠90°) տանգենս կոչվում է tgα=sinα/cosα հարաբերությունը:

2) α անկյան (α≠0°,180°) կոտանգենս կոչվում է ctgα=cosα/sinα հարաբերությունը:

Տանգենսի (α≠90°) և կոտանգենսի (α≠0°,180°) արժեքները որոշված չեն նշված անկյունների դեպքում, քանի որ դրանց համար կոտորակների հայտարարները հավասար են զրոյի:

Քանի որ ctgα=1/tgα, ապա կոտանգենսի կիրառությունը փոխարինվում են տանգենսով:

Բերված սահմանումների միջոցով և օգտագործելով միավոր շրջանագիծը, ստանում ենք 0°;90°;180° անկյունների սինուսի, կոսինուսի և տանգենսի արժեքները՝

sin0° = 0

cos0° = 1

tg0° = 0

sin90° = 1

cos90° = 0

tg90° գոյություն չունի

sin180° = 0

cos180° = −1

tg180° = 0

Սուր անկյունների համար 8-րդ դասարանից Ձեզ հայտնի է հիմնական եռանկյունաչափական նույնությունը՝ sin2α + cos2α = 1:

Երբեմն հարկ է լինում գտնել 90o ± α կամ 180o ± α տեսքի անկյունների սինուսը, կոսինուսը կամ տանգենսը` ունենալով α անկյան սինուսը, կոսինուսը կամ տանգենսը։ Այդ դեպքում օգտագործվում են որոշ բանաձևեր, որոնք կոչվում են բերման բանաձևեր.

Առաջադրանքներ․

1)

ա,գ

2)

ա,բ,գ

3)

ա)+
բ)-
գ)-
դ)-

4)

ա)sin(90o-a)=cos a
բ)cos(90o-a)=sin a
գ)sin(90o+a)=cos a
դ)cos(90o+a)=-sin a

5)

sin120° = √3/2
cos120° = −1/2
tg120° = −√3
ctg120° = −√3/3

6)

sin135° = √2/2
cos135° = −√2/2
tg135° = −1
ctg135° = −1

7)

sin150° = 1/2
cos150° = −√3/2
tg150° = −√3/3
ctg150° = −√3

Posted in Երկրաչափություն 9

Հատվող լարերի հատկությունը

1)Շրջանագծի հատողն իր արտաքին մասից մեծ է 2ամբ1/4 անգամ։ Հատողը նույն կետից տարված շոշափողից քանի՞ անգամ է մեծ։


2)Դիցուք՝ AB-ն շոշափող է, AD-ն՝ նույն շրջանագծի հատող, որի արտաքին մասը AC-ն է։ Որոշեք՝
ա) CD-ն, եթե AB = 2 սմ և AD = 4 սմ
1սմ
բ) AD-ն, եթե AC : CD = 4/5 և AB = 12 սմ
18սմ

3)Մի կետից շրջանագծին տարված շոշափողն ու հատողը համապատասխանաբար հավասար են 20 սմ և 40 սմ, իսկ հատողի հեռավորությունը շրջանագծի կենտրոնից՝ 8 սմ։ Գտեք շրջանագծի շառավիղը։

4)Մի կետից շրջանագծին տարված են հատող և շոշափող: Որոշեք շոշափողի երկարությունը, եթե նա հատողի արտաքին մասից 5 սմ–ով մեծ է, իսկ ներքին մասից` նույնքանով փոքր:

5)Մի կետից նույն շրջանագծին տարված են երկու հատող՝ որոնց երկարություններն են 15 սմ և 25 սմ։ Գտեք նրանց արտաքին մասերը, եթե հայտնի է, որ դրանցից մեկը 2 սմ–ով մեծ է մյուսից։
Արտաքին մասը 15 սմ հատողի համար՝ 5 սմ
Արտաքին մասը 25 սմ հատողի համար՝ 3 սմ

Posted in Երկրաչափություն 9

Հատվող լարերի հատկությունը

1)AB և CD հատվածները հատվում են M կետում այնպես, որ MA = 7 սմ, MB = 21 սմ, MC = 3 սմ և MD = 16 սմ: A, B, C և D կետերը գտնվու՞մ են, արդյոք, միևնույն շրջանագծի վրա։

7*21≠16*3

Ոչ

2)Շրջանագծի երկու լարեր հատվում են: Մի լարի հատվածները հավասար են 24 սմ և 14 սմ, իսկ մյուս լարի հատվածներից մեկը`28 սմ: Գտեք երկրորդ լարի երկարությունը:

14*24/28=12

3)Երկու իրար հատող լարերից մեկը տրոհված է 48 մ և 3 մ հատվածների, իսկ մյուսը` կիսվում է։ Որոշեք երկրորդ լարի երկարությունը։

3*48=x2

x2=144

x=12

Լար=12*2=24

4)Երկու իրար հատող լարերից մեկը տրոհված է 12 մ և 18 մ հատվածների, իսկ երկրորդը` 3 : 8 հարաբերությամբ։ Որոշեք երկրորդ լարի երկարությունը։

24x=216

x2=9

x=3

Լար=3*(3+8)=33

5)Իրար հատող երկու լարերից առաջինը 32 սմ է, իսկ երկրորդ լարի հատվածներն են 12 սմ և 16 սմ: Որոշեք առաջին լարի հատվածները։

8 և 24

6)Մի կետից շրջանագծին տարված են հատող և շոշափող: Որոշել շոշափողի երկարությունը, եթե հատողի արտաքին և ներքին մասերի երկարությունները համապատասխանաբար հավասար են՝ ա) 4 սմ և 5 սմ, բ) 2,25 դմ և 1,75 դմ, գ) 1 մ և 2 մ։

AB2(շոշափողը)=(4+5)*4=36

AB=6

7)Շոշափողը 20 սմ է, իսկ նույն կետից տարված և շրջանագծի կենտրոնով անցնող հատողը` 50 սմ։ Գտեք շրջանագծի շառավիղը։

50x=400

x=8

R=50-8/2=21

Posted in Երկրաչափություն 9

Եռանկյան կիսորդի հատկությունը

Առաջադրանքներ․

Խնդիրների պայմաններում C ուղիղ անկյունով և CH բարձրությունով ABC ուղղանկյուն եռանկյան տարրերի համար օգտագործված են հետևյալ նշանակումները. BC = a, AB = c, AC = b, CH = h, AH = bc, BH = ac :

1)Գտեք՝ 
ա) h–ը, a–ն և b–ն, եթե bc = 25 , ac = 16

h=20

a=4v41

b=5v51
բ) h — ը, a–ն և b-ն, եթե bc = 36, ac = 64 

h=48

a=80

b=60
գ) a-ն, c-ն և ac — ն, եթե b = 12, bc = 6

a=12v2

c=24

ac=12
դ) b-ն, c-ն և bc — ն, եթե a = 8, ac = 4 

c=16

h=4v4

b=8v3
ե) h–ը, b–ն, ac — ն և bc — ն եթե a = 6, c = 9

b=3v5

ac=4

bc=9

h=2v5

2)Ուղղանկյուն եռանկյան էջերը հարաբերում են, ինչպես 3 : 4, իսկ ներքնաձիգը հավասար է 50 մմ։ Գտեք այն հատվածները, որոնց տրոհվում է ներքնաձիգը ուղիղ անկյան գագաթից տարված բարձրությունով։

ac=18

bc=50-18=32

3)BD հատվածը ABC եռանկյան կիսորդն է։ ա) Գտեք AB–ն, եթե BC = 9սմ, AD = 7,5 սմ, DC = 4,5 սմ։ բ) Գտեք DC–ն, եթե AB = 30 սմ, AD = 20սմ, BD = 16սմ և <BDC = <C։

AB=15

DC=32/3

4)AD հատվածը ABC եռանկյան կիսորդն է։ Գտեք BD–ն և DC–ն, եթե AB = 14 սմ, BC = 20 սմ, AC = 21 սմ։

CD=12

DB=8

Posted in Երկրաչափություն 9

Համեմատական հատվածներն ուղղանկյուն եռանկյան մեջ

1)O-ն ABC եռանկյան միջնագծերի հատման կետն է: Գտե՛ք AO հատվածի երկարությունը, եթե AK միջնագիծը 18 դմ է:

2+1=3

18/3=6

18-6=12

2)O-ն ABC եռանկյան միջնագծերի հատման կետն է: Գտե՛ք AK միջնագծի երկարությունը, եթե OK-ն 5 սմ է:

1+2=3

5*2=10

10+5=15

3)Տարված է C ուղիղ անկյունով ABC եռանկյան CH բարձրությունը: Գտե՛ք AB ներքնաձիգը, եթե AC = 6 սմ, AH = 3 սմ:

36/3=12

4)Ուղղանկյուն եռանկյան ներքնաձիգին տարված բարձրությունը այն բաժանում է 4 սմ և 5 սմ երկարությամբ հատվածների: Գտե՛ք եռանկյան էջերը:

AB=4*9=36

AC=5*9=45

5)Տարված է C ուղիղ անկյունով ABC եռանկյան CH բարձրությունը:
Գտեք AB ներքնաձիգը, եթե AH:HB=4:5, AC = 6 դմ:

36=4x*9x=36x

x=1

AB=9

6)Ուղղանկյուն եռանկյան ներքնաձիգին տարված բարձրությունն այն բաժանում է 9 սմ և 16 սմ երկարությամբ հատվածների: Գտե՛ք այդ եռանկյան պարագիծը:

Posted in Երկրաչափություն 9

Նման եռանկյունների գծային տարրերի հարաբերությունը

1)ABC և A1B1C1 եռանկյունները նման են, ընդ որում՝ k = 3 : Գտեք ABC եռանկյան մակերեսը, եթե A1B1C1 եռանկյան մակերեսը 16 սմ2 է:

9*16=144

2)Նման եռանկյուններից մեկի մակերեսը 20 դմ2 է, մյուսինը`5 դմ2: Գտե՛ք այդ եռանկյունների նմանության գործակիցը:

20/5=4

4²=16

3)Նման եռանկյուններից մեկի կողմը 24 սմ է, իսկ մյուս եռանկյան դրան նմանակ կողմը 6 սմ է: Գտեք երկրորդ եռանկյան մակերեսը, եթե առաջինի մակերեսը 160 սմ է:

24/6=4

4*4=16

160/16=10
4)Նման եռանկյուններից մեկի կողմերը 5 անգամ փոքր են մյուսի կողմերից: Գտե՛ք դրանց մակերեսների հարաբերությունը:

5²=25

5)M-ը ABCD զուգահեռագծի BC կողմը բաժանվում է 1:2 հարաբերությամբ՝ հաշված B կետից: AM և BD հատվածները հատվում են K կետում: Գտե՛ք K կետի հեռավորությունը AD-ից, եթե K կետի հեռավորությունը BC-ից 5 սմ է։

6)BC = 6 սմ և AD = 18 սմ հիմքերով ABCD սեղանի անկյունագծերը հատվում են O կետում: Գտե՛ք AOD եռանկյան OM միջնագիծը, եթե BOC եռանկյան OK միջնագիծը 8 սմ է:

7)BC = 4 սմ և AD = 8 սմ հիմքերով ABCD սեղանի անկյունագծերը հատվում են O կետում: M-ը և N–ը համապատասխանաբար AO և OC հատվածների միջնակետերն են: Գտե՛ք DM-ը, եթե BN = 3 սմ:

Posted in Երկրաչափություն 9

Նման եռանկյունների գծային տարրերի հարաբերությունը

Երկու նման եռանկյունների պարագծերի հարաբերությունը հավասար է նմանության գործակցին՝

Երկու նման եռանկյունների նմանակ կողմերին տարված միջնագծերի հարաբերությունը հավասար է նմանության գործակցին՝

Երկու նման եռանկյունների հավասար անկյունների կիսորդների հարաբերությունը հավասար է նմանության գործակցին։

Երկու նման եռանկյունների նմանակ կողմերին տարված բարձրությունների հարաբերությունը հավասար է նմանության գործակցին։

Նման եռանկյունների մակերեսների հարաբերությունը հավասար է նմանության գործակցի քառակուսուն:

Առաջադրանքներ․

1)ABC և A1B1C1 եռանկյունները նման են, ընդ որում՝ k = 4 : Գտեք ABC եռանկյան պարագիծը, եթե A1B1C1 եռանկյան պարագիծը 26 դմ է:
26*4=104

2)Նման եռանկյուններից մեկի պարագիծը 28 սմ է, մյուսինը՝ 7 սմ: Գտե՛ք այդ եռանկյունների նմանության գործակիցը:
28:7=4

3)Նման եռանկյուններից մեկի կողմը 32 սմ է, մյուս եռանկյան դրան նմանակ կողմը 8 սմ է: Գտե՛ք երկրորդ եռանկյան պարագիծը, եթե առաջինի պարագիծը 120 սմ է։
k=32:8=4
P2=120:4=30

4)Նման եռանկյուններից մեկի կողմերը 6 անգամ փոքր են մյուսի կողմերից: Գտե՛ք դրանց պարագծերի հարաբերությունը:
k=6

5)ABC և A1B1C1 եռանկյունները նման են, ընդ որում՝ ∠A = ∠A1, ∠B = ∠B1: BM-ը և B1M1-ը այդ եռանկյունների միջնագծերն են: Գտե՛ք B1M1-ը, եթե AB = 12 սմ, A1B1 = 4 սմ, BM = 9 սմ։
12:4=3
9:3=3

6)ABC և A1B1C1 եռանկյունները նման են, ընդ որում՝ ∠A = ∠A1, ∠B = ∠B1: AK-ն և A1K1-ը այդ եռանկյունների կիսորդներն են: Գտե՛ք BC-ն, եթե AK = 9 սմ, A1K1 = 3 սմ, B1C1 = 7 սմ:
9:3=3
7*3=21

7)ABC և A1B1C1 եռանկյունները նման են, ընդ որում՝ ∠A = ∠A1, ∠B = ∠B1: BH-ը և B1H1-ը այդ եռանկյունների բարձրություններն են: Գտե՛ք AC-ն, եթե BH =15 սմ, B1H1 = 6 սմ, A1C1 = 8 սմ։
15:6=2,5
2,5*8=20

Posted in Երկրաչափություն 9

Եռանկյունների նմանության հայտանիշները

1)Ապացուցեք, որ նկարում պատկերված եռանկյունները նման են։

AC/DF=AB/DE=BC/EF

2)ABCD զուգահեռագծի CD կողմի վրա նշված է E կետը: AE և BC ուղիղները հատվում են F կետում։ Գտեք`
ա) EF–ը և FC-ն, եթե DE = 8 uմ, EC = 4 սմ, BC = 7 սմ, AE = 10 սմ,

EF/AE=CE/DE=4/8=0.5

0.5*10=5

k=2

7/2=3.5
բ) DE–ն և EC-ն, եթե AB = 8 սմ, AD = 5 սմ, CF = 2 սմ:

x/8-x=2/5

5x=16-2x

7x=16

x=16/7

8-16/7=40/7

3)AB և CD հիմքերով ABCD սեղանի անկյունագծերը հատվում են O կետում։ Գտեք`
ա) AB–ն, եթե OB = 4սմ, OD = 10 սմ, DC = 25 սմ,

10/4=2.5

25/2.5=10
բ) (AO)/(OC)-ն և (BO)/(OD) -ն եթե AB = a, DC = b

a/b

գ) AO-ն, եթե AB = 9,6 դմ, DC = 24 սմ, AC = 15 սմ:

x/15-x=96/24

4)ABC եռանկյան AB կողմը 15 սմ է, իսկ AC կողմը` 20 սմ։ AB կողմի վրա անջատված է AD = 8 սմ, իսկ AC կողմի վրա՝ AE = 6 սմ հատվածը։ Նման են, արդյոք, ABC և ADE եռանկյունները։

Ոչ

5)Նման են, արդյոք, երկու ուղղանկյուն եռանկյունները, եթե դրանցից մեկն ունի 40°–ի անկյուն, իսկ մյուսը`

ա) 50°–ին հավասար անկյուն,

այո

բ) 60°–ին հավասար անկյուն։

Ոչ

6)Նման են, արդյոք, ABC և A1B1C1 եռանկյունները, եթե`
ա) AB = 3սմ, BC = 5սմ, CA = 7սմ, A1B1 = 4,5սմ, B1C1 = 7,5սմ, C1A1 = 10,5սմ

Այո
բ)AB = 1,7սմ, BC = 3սմ, CA = 4,2սմ, A1B1 = 34դմ, B1C1 = 60դմ, C1A1 = 84դմ:

Այո

Posted in Երկրաչափություն 9

Եռանկյունների նմանության հայտանիշները

Եռանկյունների նմանության առաջին հայտանիշը․

Եթե մի եռանկյան երկու անկյունները համապատասխանաբար հավասար են մյուս եռանկյան երկու անկյուններին, ապա եռանկյունները նման են:  

Եթե ∢B=∢E և ∢C=∢F, ապա ΔABC∼ΔDEF

Եռանկյունների նմանության երկրորդ հայտանիշը․

Եթե մի եռանկյան երկու կողմերը համեմատական են մյուս եռանկյան երկու կողմերին, իսկ այդ կողմերով կազմված անկյունները հավասար են, ապա եռանկյունները նման են:

Եթե AB/DE=AC/DF և ∢A=∢D, ապա ΔABC∼ΔDEF

Եռանկյունների նմանության երրորդ հայտանիշը․

Եթե մի եռանկյան երեք կողմերը համեմատական են մյուս եռանկյան երեք կողմերին, ապա եռանկյունները նման են:

Եթե AB/DE=BC/EF=AC/DF, ապա ΔABC∼ΔDEF

Խնդիրներ լուծելիս, սկզբում պետք է համոզվել, որ տրված եռանկյունները նման են: Եթե եռանկյունների նմանությունը տրված չէ, ապա դա պետք է ապացուցել:

Առաջադրանքներ․

1)Նմա՞ն են ABC և A1B1C1 եռանկյունները, եթե AB = 3մ, BC = 4մ, AC = 6մ, A1B1 = 9մ, B1C1 = 12մ , A1C1 = 18մ:

Այո A1B1/AB=B1C1/BC=A1C1/AC

2)Նմա՞ն են երկու եռանկյուններ, եթե մեկի կողմերը հարաբերում են ինչպես 3:8:9, իսկ մյուսի կողմերը 24 սմ, 9 սմ, 27 սմ են:
Նման են
9/3=24/8=27/9

3)ABC և BCD եռանկյուններում AB = 36 սմ, BC = 18սմ, AC = 20 սմ, DC = 9սմ, DB = 10 սմ: Ապացուցեք, որ ΔABC ~ ΔBCD :
36/18=18/9=20/10

4)O գագաթով անկյան կողմերից մեկի վրա վերցված են A և B, իսկ մյուսի վրա C և D կետերը այնպես, որ AO = 4 սմ, BO = 7սմ, OC =12 սմ, OD = 21սմ: Նման են OAC և OBD եռանկյունները:
12/21=4/7

5)Ըստ նկարների տվյալների՝ գտեք x–ը և y–ը։

x=9
y=21

6)M-ը և N-ը ABC եռանկյան համապատասխանաբար AB և BC կողմերի միջնակետերն են: Ապացուցեք, որ ABC եռանկյունը նման է MBN եռանկյանը:

AB/MB=BC/NB
B ընդհանուր անկյուն

Posted in Երկրաչափություն 9

Նման եռանկյունների սահմանումը

1)ABC և MNK եռանկյունները նման են, ընդ որում՝ k = 2, 5 : Գտեք MNK եռանկյան կողմերը, եթե ABC եռանկյան կողմերը 12 դմ, 8 դմ և 15 դմ են:․
4․8, 3․2, 6

2)Նմա՞ն են, արդյոք, ABC և DEF եռանկյունները, եթե <A = 106օ, <B = 34օ, <E = 106օ, <F = 40օ, AC = 4,4սմ, AB = 5,2սմ, BC = 7,6սմ, DE = 15,6սմ, DF = 22,8սմ, EF = 13,2սմ:
Այո
AB:ED=BC:DF=AC:EF

3)ABC և KMN նման եռանկյունների մեջ AB և KM, BC և MN կողմերը նմանակ են։ Գտեք KMN եռանկյան կողմերը, եթե AB = 4 սմ, BC = 5 սմ, CA = 7 սմ , KM/AB = 2,1։
KM=8,4սմ MN=10,5սմ KM=14,7սմ

4)KPF և EMT եռանկյունները նման են, ընդ որում՝ KP/ME = PF/MT = KF/ET, <F = 20օ, <E = 40օ : Գտեք այդ եռանկյունների մյուս անկյունները։
<K=40
<P=120
<T=20
<M=120

5)Նման եռանկյունների երկու նմանակ կողմերն են 2 սմ և 5 սմ։ Առաջին եռանկյան մյուս երկու կողմերն են 3 սմ և 4 սմ։ Գտեք երկրորդ եռանկյան պարագիծը:
P=22,5

6)Նման ուղղանկյուն եռանկյունների երկու նմանակ կողմերը հարաբերում են, ինչպես 2 : 3: Նրանցից առաջինի էջերն են 3 սմ և 4 սմ։ Գտեք յուրաքանչյուր եռանկյան մակերեսը։
S1=6սմ2
S2=13,5սմ2