Posted in Հանրահաշիվ 8

Մեկ անհայտով գծային անհավասարումների համակարգեր

Անհավասարումների համակարգը բաղկացած է մեկ կամ մի քանի անհավասարումներից: Այդ անհավասարումները միավորվում են ձևավոր փակագծով: Պետք է գտնել այդ անհավասարումների բոլոր ընդհանուր լուծումները: 

Փոփոխականի այն արժեքները, որոնց դեպքում համակարգի անհավասարումներից յուրաքանչյուրը վերածվում է ճիշտ անհավասարության, կոչվում են անհավասարությունների համակարգի լուծումներ: 

Գծային անհավասարումների համակարգը լուծելու համար, պետք է լուծել համակարգի յուրաքանչյուր անհավասարումը և այնուհետև գտնել ստացված լուծումների բազմությունների ընդհանուր մասը (հատումը): Դա էլ հենց կլինի համակարգի բոլոր լուծումների բազմությունը:

Լուծել համակարգը՝ նշանակում է գտնել նրա բոլոր լուծումները:

Օրինակ․

Լուծենք հետևյալ համակարգը՝ 

{2x−1>3

{3x−2<11

1. Լուծելով առաջին անհավասարումը, ստանում ենք՝

2x>4

x>2

2. Լուծելով երկրորդ անհավասարումը, ստանում ենք՝

3x<13

x<13/3

3. Ստացված միջակայքերը նշենք թվային առանցքի վրա: Յուրաքանչյուրի համար ընտրենք իր նշումը:

Al313.jpg

4. Անհավասարումների համակարգի լուծումը թվային առանցքի վրա նշված երկու բազմությունների հատումն է:

Մեր դեպքում ստանում ենք այս պատասխանը՝ (2;13/3)

Առաջադրանքներ․
1)Կոորդինատային ուղղի վրա նշեք անհավասարումների համակարգի բոլոր լուծումները (եթե դրանք գոյություն ունեն)․

x€(3;+∞)

x€(1;+∞)

x€(-∞;2)

x€(-∞;-5)

x€(-7;-5)

x€(-5;0)

x€(4;+∞)

x€(-3;+∞)

x€(-∞;-1)

x€(-∞;-16)

Անհայտ's avatar

Հեղինակ՝

Թողնել մեկնաբանություն