Թվային արտահայտությունը կազմվում է թվերից, թվաբանական գործողությունների նշաններից և փակագծերից:
Թվային արտահայտության գործողությունների արդյունքում ստացված թիվը կոչվում է թվային արտահայտության արժեք:
Եթե թվային արտահայտությունը պարունակում է նաև տառեր (կամ միայն տառեր), ապա այն կոչվում է հանրահաշվական արտահայտություն:
Հանրահաշվական կոտորակ կոչվում է AB տեսքի արտահայտությունը, որտեղ A-ն որևէ բազմանդամ է, իսկ B-ն՝ ոչ զրոյական բազմանդամ:
Հանրահաշվական կոտորակը բազմանդամի և ոչ զրոյական բազմանդամի քանորդ է:
x/x−3; b−1/b+6; 1+x3/x2+1; y+2/y2−6y+6 արտահայտությունները հանրահաշվական կոտորակներ են:
Հանրահաշվական կոտորակների հիմնական հատկությունը․
Կոտորակի համարիչի և հայտարարի նույն թվի վրա բաժանելը կոչվում է կոտորակի կրճատում:
Հանրահաշվական կոտորակի արժեքը չի փոխվի, եթե նրա համարիչը և հայտարարը բազմապատկենք միևնույն արտահայտությամբ, որի արժեքը զրոյից տարբեր է:
Հանրահաշվական կոտորակի արժեքը չի փոխվի, եթե նրա համարիչը և հայտարարը բազմապատկենք միևնույն արտահայտությամբ, որի արժեքը զրոյից տարբեր է:
Հաճախ հանրահաշվական կոտորակների հետ գործողություններ կատարելիս, պետք է լինում փոխարինել կոտորակի համարիչը կամ հայտարարը հակադիրով: Սակայն, որպեսզի կոտորակի արժեքը չփոխվի, պետք է հետևել նշանի փոփոխության կանոններին՝
կոտորակի արժեքը չի փոխվի, եթե
— փոխենք համարիչի և հայտարարի նշանները,
— փոխենք համարիչի և ամբողջ կոտորակի նշանները,
— փոխենք հայտարարի և ամբողջ կոտորակի նշանները:
Եթե A-ով և B-ով նշանակենք հանրահաշվական կոտորակի համարիչն ու հայտարարը, ապա նշանի փոփոխման կանոնը կարելի է գրել հետևյալ կերպ՝
Առաջադրանքներ․
1)Հետևյալ կոտորակներից ո՞րն է հավասար 2/(x−14)-ի:
Ընտրի՛ր պատասխանի ճիշտ տարբերակը:
−(x+14)/−2
−2/−(x−14)
(x−14)/−2
2/(14−x)
−2/(14−x)
2)Կոտորակը ձևափոխեք այնպես, որ նրա առջև դրված նշանը փոխվի հակադիրով՝
-(a-1)/a
x/3-x
-(y-x)/x+y
a2+1/2-a
3)Կոտորակները բերեք 36x2 հայտարարի`
5x2/36x2 72/36x2 132x/36x2 28/36x2 9x/36x2
4)A միանդամը կամ բազմանդամը ընտրեք այնպես, որ ստացվի ճիշտ հավասարություն
x/4=x/A A=4
mn/2(x-y)=mn/A A=2(x-y)
Լրացուցիչ աշխատանք (տանը)․
1)Կիրառելով հանրահաշվական կոտորակների հիմնական հատկությունը, ∗-ի փոխարեն գրիր այնպիսի արտահայտություն, որ ստացվի ճիշտ հավասարություն`
Դիցուք տրված է x և y անհայտներով գծային հավասարումների համակարգ՝
{a1x+b1y+c1=0
{a2x+b2y+c2=0
(x;y) թվազույգը կոչվում է համակարգի լուծում, եթե այն բավարարում է համակարգի հավասարումներից յուրաքանչյուրին:
Առաջին աստիճանի գծային հավասարմանը բավարարում են նրա գրաֆիկի՝ ուղիղ գծի վրա գտնվող բոլոր (x;y) կետերը:
Հետևաբար, եթե մենք ուզում ենք, որ բավարարվեն համակարգի երկու գծային հավասարումները միաժամանակ, ուրեմն պետք է փնտրել այնպիսի (x;y) կետեր, որոնք միաժամանակ պատկանում են երկու ուղիղներից յուրաքանչյուրին:
Այսպիսով, համակարգի լուծումները համակարգի հավասարումներով տրվող ուղիղների (գրաֆիկների) ընդհանուր կետերն են:
Օրինակ՝
1. Լուծենք հետևյալ համակարգը:
{x+2y−5=0,
{2x+4y+3=0
x+2y−5=0 հավասարման գրաֆիկն ուղիղ գիծ է: Կառուցենք այդ ուղիղը:
Գտնենք այս հավասարմանը բավարարող երկու կետ՝
x
5
0
y
0
2,5
xОy հարթության վրա կառուցենք գտնված (5;0) և (0;2.5) կետերը և դրանցով տանենք l1 ուղիղը:
2x+4y+3=0 հավասարման գրաֆիկը ևս ուղիղ գիծ է:
Գտնենք այս հավասարմանը բավարարող երկու կետ՝
x
−1,5
2,5
y
0
−2
xОy հարթության վրա կառուցենք գտնված (−1.5;0) և (2.5;−2) կետերը և դրանցով տանենք l2 ուղիղը:
l1 և l2 ուղիղները զուգահեռ են և չունեն ընդհանուր կետեր:
Պատասխան՝ համակարգը լուծում չունի:
Օրինակ՝
2. Լուծենք հետևյալ համակարգը:
{2x−y−5=0,
{2x+y−7=0
Համակարգի հավասարումները բերենք գծային ֆունկցիայի ընդհանուր տեսքին՝ y=2x−5 և y=−2x+7
y=2x−5 ֆունկցիայի գրաֆիկը ուղիղ գիծ է:
Գտնենք այս հավասարմանը բավարարող երկու կետ՝
x
0
3
y
−5
1
xОy հարթության վրա կառուցենք գտնված (0;−5) և (3;1) կետերը և դրանցով տանենք l1 ուղիղը:
y=−2x+7 ֆունկցիայի գրաֆիկը ուղիղ գիծ է:
Գտնենք այս հավասարմանը բավարարող երկու կետ՝
x
0
1
y
7
5
xОy հարթության վրա կառուցենք գտնված (0;7) և (1;5) կետերը և դրանցով տանենք l2 ուղիղը:
l1 և l2 ուղիղները հատվում են A կետում, որի կոորդինատները համակարգի միակ լուծումն են:
Պատասխան՝ (3;1)
Օրինակներում կիրառեցինք համակարգերի լուծման գրաֆիկական եղանակը:
Գրաֆիկական եղանակը հուսալի չէ, քանի որ միշտ չի հաջողվում ճշգրիտ գտնել հատման կետի կոորդինատները: Այդ պատճառով, խորհուրդ է տրվում գրաֆիկորեն գտնված կետը տեղադրել համակարգի հավասարումների մեջ և համոզվել, որ դրանք բավարարվում են:
Այսպիսով, գալիս ենք հետևյալ եզրակացություններին:
1. Համակարգի հավասարումներով տրված ուղիղները կարող են հատվել մեկ կետում: Այդ կետի կոորդինատները համակարգի միակ լուծումն են:
2. Համակարգի հավասարումներով տրված ուղիղները կարող են լինել զուգահեռ և չհատվել: Այս դեպքում համակարգը լուծում չունի:
3. Համակարգի հավասարումներով տրված ուղիղները կարող են համընկնել: Այս դեպքում համակարգն ունի անվերջ թվով լուծումներ:
Առաջադրանքներ․
Հավասարումների համակարգը լուծել գրաֆիկական եղանակով․
Օրինակ (հնագույն) Հանդիպեցին երկու հովիվ՝ Հովհաննեսը և Պետրոսը: Հովհաննեսն ասում է Պետրոսին. «Տուր ինձ մի ոչխար, և ինձ մոտ կլինի երկու անգամ ավելի ոչխար, քան քեզ մոտ»: Իսկ Պետրոսը նրան պատասխանում է. «Ոչ, ավելի լավ է դու տուր ինձ մի ոչխար, և մեզ մոտ կլինեն հավասար թվով ոչխարներ»: Քանի՞ ոչխար ուներ նրանցից յուրաքանչյուրը:
Լուծում: Դիցուք Հովհաննեսն ուներ x ոչխար, իսկ Պետրոսը՝ y ոչխար: Եթե Պետրոսը Հովհաննեսին տար մեկ ոչխար, ապա Պետրոսի մոտ կմնար (y-1) ոչխար, իսկ Հովհաննեսի մոտ կլիներ (x+1) ոչխար:
Բայց այդ դեպքում Հովհաննեսի մոտ երկու անգամ շատ ոչխար կլիներ, քան Պետրոսի մոտ: Հետևաբար
x+1=2(y-1):
Իսկ եթե Հովհաննեսը Պետրոսին մեկ ոչխար տար, ապա Հովհաննեսի մոտ կմնար (x-1) ոչխար, իսկ Պետրոսի մոտ կդառնար (y+1) ոչխար: Բայց այդ դեպքում նրանք կունենային հավասար թվով ոչխարներ: Հետևաբար
x-1=y+1:
Այս երկու հավասարումներից կազմենք համակարգ՝
Համակարգն էլ լուծելով մեզ արդեն ծանոթ տեղադրման կամ գումարման եղանակով՝ կստանանք, որ x=7; y=5: Այսպիսով, Հովհաննեսն ունի 7 ոչխար, իսկ Պետրոսը՝ 5 ոչխար:
Առաջադրանքներ․
1)
ա) Երկու թվերի գումարը 10 է, իսկ տարբերությունը՝ 4: Գտեք այդ թվերը: 7; 3
բ) Երկու թվերի գումարը 21 է, իսկ տարբերությունը՝ 9: Գտեք այդ թվերը: 15; 6
2) Մի թիվը 2 անգամ մեծ է մյուսից: Եթե այդ թվերից փոքրը մեծացվի 4 անգամ, իսկ մեծը՝ 2 անգամ, ապա նրանց գումարը հավասար կլինի 44: Գտեք այդ թվերը: 11; 5
3) Տրված են երկու թվեր։ Եթե առաջին թիվը բազմապատկենք 2-ով, ապա ստացված թիվը 1-ով մեծ կլինի երկրորդից, իսկ եթե երկրորդ թիվը բազմապատկենք 2-ով, ապա ստացված թիվը 7-ով մեծ կլինի առաջինից։ Գտեք այդ թվերը։ 3; 5
Լրացուցիչ աշխատանք (տանը)․
1)
ա) Մի թիվը 6-ով մեծ է մյուսից: Այդ թվերի գումարը հավասար է 40-ի: Գտեք այդ թվերը: 17; 23
բ) Մի թիվը 15-ով փոքր է մյուսից: Գտեք այդ թվերը, եթե նրանց գումարը 23 է: 19; 4
2) Մի թիվը 7-ով մեծ է մյուսից: Եթե փոքր թիվը մեծացվի 2 անգամ, իսկ մեծը՝ 6 անգամ, ապա նրանց գումարը կդառնա 31: Գտեք այդ թվերը: — 8/11; 45/8